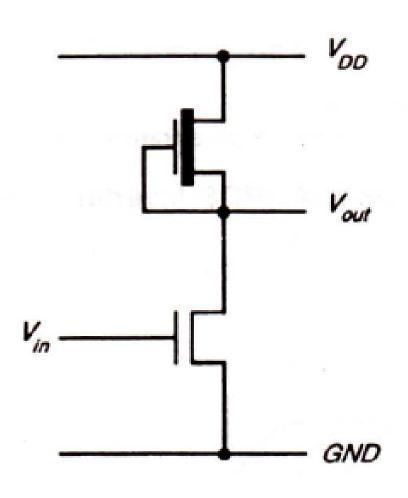
Electrical properties of MOS circuit

Electrical properties of MOS circuit:

- Parameters of MOS transistors, pass transistors,
- N MOS inverter,
- Pull-up to pull down ratio for an N MOS inverter,
- C MOS inverters,
- MOS transistor circuit model,
- Latch up on C MOS circuits.

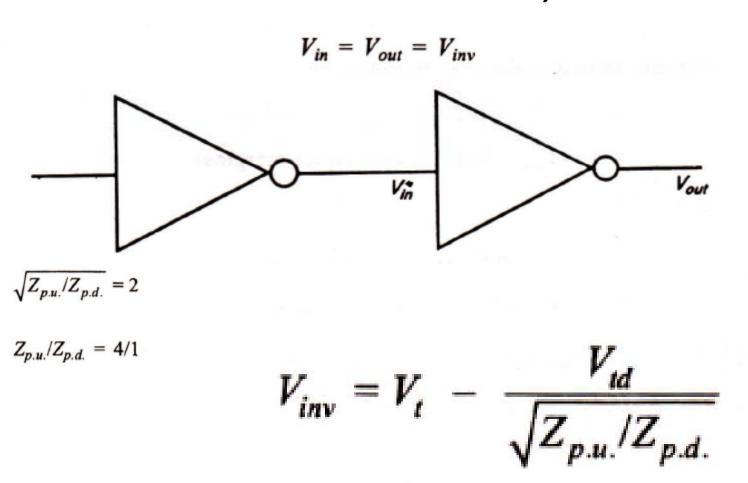
Parameter of MOS

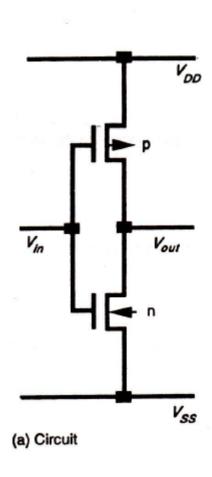

 Transconductance expresses the relationship between output current *Ids and the input* voltage Vgs and is defined as

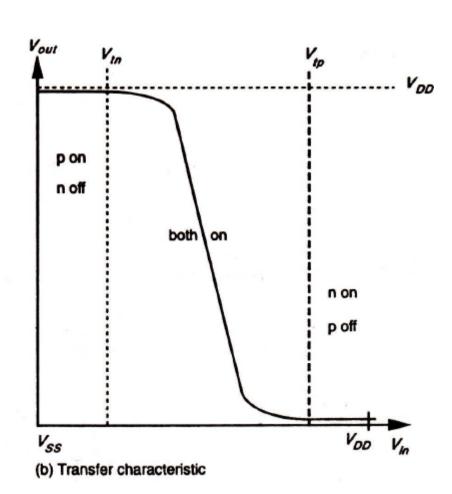
$$g_m = \frac{\delta I_{ds}}{\delta V_{gs}} | V_{ds} = \text{constant}$$

The output conductance gds can be expressed by

$$g_{ds} = \frac{\delta I_{ds}}{\delta V_{gs}} = \lambda . I_{ds} \alpha \left(\frac{1}{L}\right)^2$$


NMOS Inverter

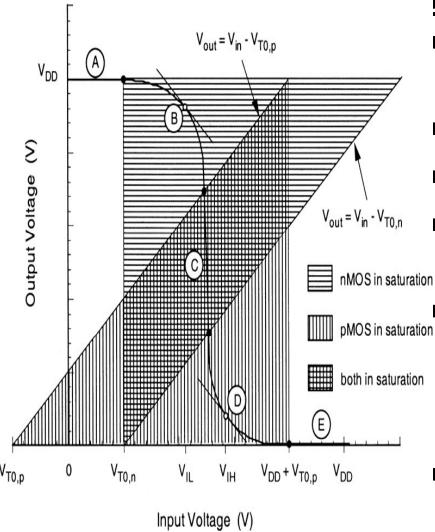

With no current drawn from the output, the currents *Ids for both transistors* must be equal.


- For the depletion mode transistor, the gate is connected to the source so it is always on and only the characteristic curve *Vgs* = 0 is relevant.
- In this configuration the depletion mode device is called the pull-up (p.u.) and the enhancement mode device the pull-down (p.d.) transistor.

Pull-up to pull down ratio for an N MOS inverter,

CMOS Inverter

$V_{out} = V_{in} - V_{T0,p}$ $V_{\rm DD}$ Output Voltage (V) $V_{out} = V_{in} - V_{T0,n}$ (c)nMOS in saturation pMOS in saturation both in saturation $V_{T0,n}$ $V_{T0,p}$ $V_{DD} + V_{T0,p} \quad V_{DD}$ Input Voltage (V)


In Region 1:

- V_{in}= 0
 - PM=ON
 - NM=OFF
- No current is flowing through the inverter
- $V_{out} = V_{DD} = '1'$
- V_{out} is pulled up to V_{DD} through PMOS

$V_{out} = V_{in} - V_{T0,p}$ V_{DD} **Output Voltage** $V_{out} = V_{in} - V_{T0,n}$ nMOS in saturation pMOS in saturation both in saturation $V_{T0,p}$ $V_{DD} + V_{T0,p} V_{DD}$ Input Voltage (V)

In Region II:

- Increase the input voltage beyond logic 0
- Voltage crosses the threshold voltage (V_t)_N of nMOS transistor
 - $-V_{in} > (V_t)_N$
 - NMOS starts conducting and goes to saturation
- Similarly V_{in} < (V_t)_P
 - PMOS starts conducting and region of operation is called Linear/ NON Saturated/ Resistive mode
- V_{out} start to decrease & a small amount of current start to flow from V_{DD} to GND

In Region III

- I/p voltage is further increased
- PM goes in saturation
- NM also in saturation
- CMOS exhibits maximum gain
 - More energy is consumed; when CMOS inverter switches from one state to other
- Maximum amount of current flows between V_{DD} to GND

$V_{out} = V_{in} - V_{T0,p}$ V_{DD} **Output Voltage** $V_{out} = V_{in} - V_{T0,n}$ nMOS in saturation pMOS in saturation both in saturation $V_{DD} + V_{T0,p}$ $V_{T0,p}$ Input Voltage (V)

In Region IV

- I/p voltage is further increased
- NM remains in conducting mode but it has only a small voltage across it
 - Operate in linear

Now PM conduct heavily and has large voltage across it

- Comes to saturation mode
- Again current flowing between V_{DD} and GND decreases

$V_{out} = V_{in} - V_{T0,p}$ V_{DD} **Output Voltage** $V_{out} = V_{in} - V_{T0,n}$ (c) nMOS in saturation pMOS in saturation both in saturation $V_{DD} + V_{T0,p} V_{DD}$ $q_{,0T}V$ $V_{T0,n}$ Input Voltage (V)

In region V

When i/p voltage approaches V_{DD}

- NM- ON
- PM OFF

Again no Current flow through inverter i.e. V_{DD} to GND

$$-V_{out} = GND$$

V_{out} is pulled down to ground through NMOS transistor i.e. NM

$$-V_{out} = 0$$

MOS TRANSISTOR CIRCUIT MODEL

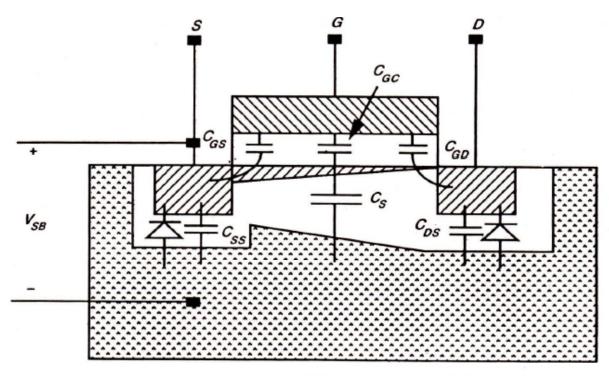
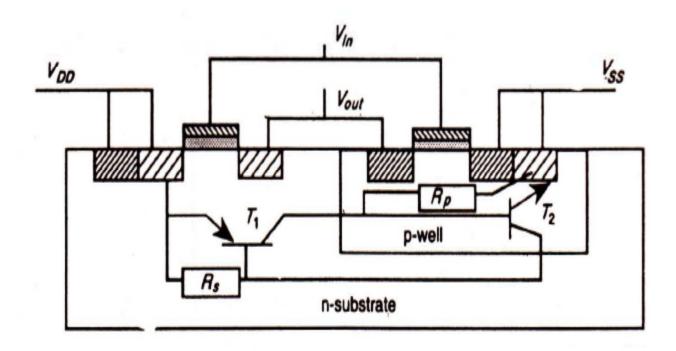



FIGURE 2.16 nMOS transistor model.

```
es: C_{GC} = gate to channel capacitance C_{GS} = gate to source capacitance C_{GD} = gate to drain capacitance C_{GD} Small for self-aligning nMOS process
```

Latch Up for CMOS

- Latch-up may be induced by glitches on the supply rails or by incident radiation.
- The mechanism involved may be understood by referring to Figure which shows the key parasitic components associated with a p-well structure in which an inverter circuit (for example) has been formed.

